自然语言处理(NLP,Natural Language Processing) 是研究人与计算机交互的语言问题的一门学科。我们平时使用的语言,中文、英语等即为自然语言,自然语言处理即为一种能让计算机理解人类语言的技术。自然语言处理的应用十分广泛,例如:机器翻译、手写体和印刷体字符识别、语音识别及文语转换、信息检索、信息抽取与过滤、文本分类与聚类、舆情分析和观点挖掘等。
文本分析应用的就是NLP技术,市面上有很多应用NLP技术研发的语义分析产品,基本原理都是通过文本数据处理,圈定关键词,分析关键词的词频,提炼用户观点。
文本数据属于非结构化数据,数据信息更为复杂,具有不规则、不完整性特征,无法通过既定的数据模型直接分析。需要将文本数据进行预处理,输出可以应用数据库二位逻辑表来表现的数据。
文本数据的来源很多,例如微博、小红书、知乎、淘宝、论坛、视频网站等等。在电商领域,本文数据来源主要来自电商直播的聊天窗口、客服咨询界面、产品售后评价等。分析方法主要为文本数据预处理,提炼出主要分析维度和细分维度,匹配维度下的关键词,输出各维度的词频和转化率,挖掘用户观点,发现产品机会点。
公域流量的获取成本越来越高,提升私域流量的转化成为了降本增效的有效途径。淘宝店铺每天进店人数、咨询人数过万,能够转化的却寥寥无几,询单未购人群和详情页跳出人群居高不下,是哪里出了问题?
是客服服务不到位?活动力度不够大?还是产品卖点与用户需求不匹配?
用户在购买产品时总有2种力影响着他们的消费行为,一个是动力,即消费者需求与痛点,一个是阻力,即产品不能满足消费者预期或信息不对称。当消费阻力大于消费动力时,用户往往难以转化。
商家在运营时同样面临着用户需求无法准确获取,产品成交归因无法分析,客服服务质量无法评估,产品卖点无法精准突出等问题。
通过文本分析,商家可以了解用户的真实需求,对用户进行精准营销,减少产品卖点与用户需求的信息不匹配问题,从而促进交易的达成。
用户往往会带着需求浏览产品主图和详情页,希望能够直接从产品介绍中找到符合自己预期的产品卖点。当产品卖点满足用户需求时,用户就是直接静默转化,当产品卖点与用户需求不匹配时,用户就会寻求客服帮助或直接流失。
那么是什么因素直接影响用户的转化?转化的归因问题一直是电商运营的一大痛点。我们以粉底产品为例,影响用户购买粉底的主要原因是什么?
为了更好的分析用户的真实需求和痛点,我们将售前咨询的文本数据进行预处理,圈定出用户的主要咨询热点,分类归纳出对应的一级维度,再将一级维度细分拆解出二级维度,通过关键词匹配各个维度的询单人数和 转化人数。例如:
通过波士顿矩阵模型分析各个维度的咨询率和转化率,从而挖掘用户的主要咨询热点和影响用户转化的主要因素。
用户进行售前咨询,往往是带着疑虑的意向用户,用户是否转化取决于用户的疑虑是否能够得到快速、精准和满意的解决。因此客服服务至关重要,客服响应的及时性、答疑的准确性和推荐的精准性同时影响着用户的转化。
对于同一个咨询热点,不同客服的答疑话术和答疑效果是不同的。例如用户咨询:这款粉底遮瑕效果怎么样?
显而易见,主观意识都会认为客服C的答疑效果更佳。通过分析客服答疑话术的转化率,可以进行客服服务质量评估,帮助优化客服答疑标准化流程,提升客服转化率。
用户进行售前咨询常常会带着自己的痛点和需求,依据用户问题,商家可以构建用户专属个人画像。对于询单未购人群,商家可以根据用户个人画像进行二次触达,针对性制定合理的产品推荐方案,提升询单未购人群转化率。
通过售后评价文本数据,分析已购人群的产品满意度,比较与竞争品牌产品的好评率差异,帮助商家了解自身产品优劣势表现。
评价分析的作用:
在电商运营的过程中,通过文本分析,可以打通售前、运营和售后的销售链路,解决商家售前无法准确识别用户需求,售中无法精准解决用户痛点,售后无法了解用户产品满意度的问题,帮助商家建立并优化售前、售中和售后的标准化机制,进而提升各个销售环节的购买转化率。